If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2=128x
We move all terms to the left:
32x^2-(128x)=0
a = 32; b = -128; c = 0;
Δ = b2-4ac
Δ = -1282-4·32·0
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-128}{2*32}=\frac{0}{64} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+128}{2*32}=\frac{256}{64} =4 $
| 6x-1+4x+11+x=180 | | 6*p=36 | | (14x+19)=16x+3 | | 1/4(60+16x)=-5 | | 5(v-7)-7=-4(-8v+7)-9v | | w/18=-15 | | -6x•|=5 | | 6x+12-4x=60-6x | | 5(v-7)-7=-4(-8v=7)-9v | | -9s+18+4=-9s-6 | | (8x+14)+(13x−2)=180 | | 2-3{x+4=17 | | -6(2n+8)=-12n | | 183+(4x-8)+(3x-5)+(3x+20)=540 | | 183+(94x-8)+(3x-5)+(3x+20)=540 | | (t)=16t^2+320 | | -6h-9=-9-18h+12h | | 183+94x-8)+(3x-5)+(3x+20)=540 | | 375-31*21=a | | 6x2−5x+9=0 | | 4-6(2m-20)=-5m+19 | | –g+2(3+g)=–4(g+1 | | -9-9n+7=-2-9n | | C(x)=2x^2-200x+19,000 | | m-3/2=5/4 | | -(b-7)=2b+28 | | 11/2+m=6 | | -w=-8(-7w-19)+19 | | 9y-1=127 | | 3+13-9d=16-9d | | 3w-27/5=0 | | 49-u=187 |